Dynamic Programming - 70. Climbing Stairs
70. Climbing Stairs
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
- 1 step + 1 step
- 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
- 1 step + 1 step + 1 step
- 1 step + 2 steps
- 2 steps + 1 step
思路:
爬楼梯和62题属于典型的斐波那契数列型的动态规划。做动态规划题目主要是四步:
- 确定状态,找出问题中的子问题,考虑最后一步是什么。
- 写出状态转移方程。
- 定义初始条件和边界条件(Corner Case)
- 计算顺序,也就是从小到大还是从大到小,爬楼梯问题很明显,是从小到大,备忘录类型。
这题中,我的dp[i]代表的是到达第i-1台台阶需要走几步,所以dp[0]代表的是第一台台阶需要的步数,所以我的slice长度开辟了n。
代码:
go:
func climbStairs(n int) int {
if n <= 0 {
return 0
}
if (n == 1 || n == 2) {
return n
}
dp := make([]int, n)
// initialization
dp[0] = 1
dp[1] = 2
for i := 2; i < n; i++ {
dp[i] = dp[i-1] + dp[i-2]
}
return dp[n-1]
}