Array - 36. Valid Sudoku
36.Valid Sudoku
Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to the following rules:
- Each row must contain the digits
1-9
without repetition. - Each column must contain the digits
1-9
without repetition. - Each of the 9
3x3
sub-boxes of the grid must contain the digits1-9
without repetition.
A partially filled sudoku which is valid.
The Sudoku board could be partially filled, where empty cells are filled with the character '.'
.
Example 1:
Input:
[
["5","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]
]
Output: true
思路:
题目意思是给定一个数独,验证数独矩阵是否合法,就是每一行不允许有数字重复,每一列不允许有数字重复,每个3*3的小方阵也不允许有数字重复,采用三个二维矩阵来记录对应行,列和小方阵的情况即可。
这里题目意思有点模糊,如果保证了每行每列每个小方阵不允许全为空,case又报错。
代码:
go:
func isValidSudoku(board [][]byte) bool {
var col, row, subBox [10][10]bool
for i := range board {
for j, c := range board[i] {
if c == '.' {
continue
}
if col[i][c - '0'] || row[j][c - '0'] || subBox[i/3 + j/3*3][c - '0'] {
return false
}
col[i][c - '0'] = true
row[j][c - '0'] = true
subBox[i/3 + j/3*3][c - '0'] = true
}
}
return true
}