Tree - 450. Delete Node in a BST
450. Delete Node in a BST
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
- Search for a node to remove.
- If the node is found, delete the node.
Note: Time complexity should be O(height of tree).
Example:
root = [5,3,6,2,4,null,7]
key = 3
5
/ \
3 6
/ \ \
2 4 7
Given key to delete is 3. So we find the node with value 3 and delete it.
One valid answer is [5,4,6,2,null,null,7], shown in the following BST.
5
/ \
4 6
/ \
2 7
Another valid answer is [5,2,6,null,4,null,7].
5
/ \
2 6
\ \
4 7
思路:
题目意思就是让在一个bst中删除一个节点,删除的时候分类讨论就可以,有三种情况,一种是被删除节点只有左子树为空,一种是只有右子树为空,一种是两颗子树都不为空,前两种好处理,直接把不为空的那个子节点替换掉父节点位置就可以,但是如果是左右孩子又不为空,那就需要注意,可以选择左子树的最大值或者右子树的最小值来放在当前位置,这里为了方便,就选择右子树的最小值,也就是被删除节点的后继节点来放到被删除节点的位置。
代码:
go:
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func deleteNode(node *TreeNode, key int) *TreeNode {
if node == nil {
return nil
}
if key < node.Val {
node.Left = deleteNode(node.Left, key)
return node
} else if key > node.Val {
node.Right = deleteNode(node.Right, key)
return node
} else { // key == node.Val
// 1. 左子树为空
if node.Left == nil {
rightNode := node.Right
node.Right = nil
return rightNode
}
// 2. 右子树为空
if node.Right == nil {
leftNode := node.Left
node.Left = nil
return leftNode
}
// 3. 左右子树都不为空
// 找到待删除的节点的后继(比待删除节点的最小节点),然后用这个后继代替待删除的节点. Hibbard deletion
successor := minimum(node.Right)
successor.Right = removeMinNode(node.Right)
successor.Left = node.Left
return successor
}
}
// 以root为根的bst的最小值
func minimum(root *TreeNode) *TreeNode {
if root.Left == nil {
return root
}
return minimum(root.Left)
}
// 删除以root为根的bst的最小值,并返回这个位置应该变成的节点
func removeMinNode(node *TreeNode) *TreeNode {
if node.Left == nil {
rightNode := node.Right
node.Right = nil
return rightNode
}
node.Left = removeMinNode(node.Left)
return node
}