DFS - 980. Unique Paths III
980. Unique Paths III
On a 2-dimensional grid
, there are 4 types of squares:
1
represents the starting square. There is exactly one starting square.2
represents the ending square. There is exactly one ending square.0
represents empty squares we can walk over.-1
represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
思路:
这是求不同路径的第三个变形题,与62和63题不同的是,对每个方格又增加了状态,1代表起点,2代表终点,0代表可以走,-1代表不可以走,最容易想到的就是使用dfs来求解,往四个方向探索回溯就可以。
代码:
go :
func uniquePathsIII(grid [][]int) int {
sx := -1
sy := -1
n := 1 // 起点算1
for i := 0; i < len(grid); i++ {
for j := 0; j < len(grid[0]); j++ {
if grid[i][j] == 0 {
n++
} else if grid[i][j] == 1 {
sx = i
sy = j
}
}
}
return dfs(grid, sx, sy, n)
}
var dics = [][]int{{1, 0},{-1, 0},{0, 1},{0, -1}}
func dfs(grid [][]int, x, y int, n int) int {
if x < 0 || x == len(grid) || y < 0 || y == len(grid[0]) || grid[x][y] == -1 {
return 0
}
// ending
if grid[x][y] == 2 {
if n == 0 {
return 1
}
return 0
}
var paths int
grid[x][y] = -1
for _, dic := range dics {
paths += dfs(grid, x + dic[0], y + dic[1], n -1)
}
grid[x][y] = 0
return paths
}