Dynamic Programming - 279. Perfect Squares
279. Perfect Squares
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
Example 1:
Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.
思路:
题目意思是求能用最少的完全平方表示一个数,有一个四平方和定理,可以在O(n)内解决问题,但是这里选择用动态规划来做,子问题就是一个数是由另一个数加上一个平方数,也就是比如
A = B + x^2
, 而B由是子问题求解,这样的话,能表示A的最少组合就是B最少组合加一,所以动态转移方程就是:dp[i] = min{dp[ i - j*j] + 1}, (j*j <= i)
,初始条件是dp[0] = 0, 因为0不能由状态方程求出。求解顺序很明显是从小到大。
代码:
go:
func numSquares(n int) int {
dp := make([]int, n+1)
for i := 0; i < n+1; i++ {
dp[i] = math.MaxInt32
}
dp[0] = 0;
for i := 1; i <= n; i++ {
// dp[n] = min(dp[n-x^2] + 1) for all x
for j := 1; j * j <= i; j++ {
dp[i] = min(dp[i], dp[i- j*j] + 1)
}
}
return dp[n]
}
func min(i, j int) int {
if i < j {
return i
}
return j
}