Dynamic Programming - 97. Interleaving String
97. Interleaving String
Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.
Example 1:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
Output: true
Example 2:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
Output: false
思路:
题目意思是指如果用s1和s2可以拼出s3就返回true,但注意拼接的时候是存在顺序的,就是用来拼接s1和s2的字符在s3中顺序需要和原来一样。考虑最后一步是s3的最后一个字母该来自于谁,之前的拼接出来的结果是否合法,就等价于一个拼接合法字符串加上s1或者s2最后一个字符等于最终结果,这就把问题退化为求上一个合法字符串拼接的问题,很明显,可以用动态规划来做.
如图:
( )s1 0 d b b c a
s2
0 T F F F F F
a T F F F F F
a T T T T T F
b F T T F T F
c F F T T T T
c F F F T F T
状态转移方程就是dp[i][j] = (dp[i-1][j] && s2.charAt(i-1) == s3.charAt(i+j-1) || dp[i][j-1] && s1.charAt(j-1) == s3.charAt(i+j-1), 其中dp[i][j]代表当前位置是否可以用s1和s2和上一个字符串拼接出来
。初始条件和边界条件是s1为空s2为空,那么s3一定为空,所以dp[0][0] = true,而当s1为空s2应该和s3一一对应,所以每比较一位就看上一个状态合不合法,就能决定当前是否合法。
代码:
go:
func isInterleave(s1 string, s2 string, s3 string) bool {
if len(s1) + len(s2) != len(s3) {
return false
}
m, n := len(s2), len(s1)
dp := make([][]bool, m+1)
for i := 0; i < m + 1; i++ {
dp[i] = make([]bool, n+1)
}
for i := 0; i < m+1; i++ {
for j := 0; j < n+1; j++ {
if i == 0 && j != 0 {
dp[i][j] = dp[i][j-1] && (s1[j-1] == s3[j-1])
} else if i != 0 && j == 0 {
dp[i][j] = dp[i-1][j] && (s2[i-1] == s3[i-1])
} else if i == 0 && j == 0 {
dp[i][j] = true
} else {
dp[i][j] = ((dp[i-1][j] && s2[i-1] == s3[i+j-1]) || (dp[i][j-1] && s1[j-1] == s3[i+j-1]))
}
}
}
return dp[m][n]
}